
 

PUBLIC 

Podcast: Process Transformers 
Episode 31: Healthy Software at Scale: Blueprints for 
Adaptable Architecture | Feat. Chris Richardson 

 

 

Fig. 1 – Cover art of Process Transformers podcast 
Figure description – A square cover image with decorative geometric designs representing workflows and 
connections with blocks, circles, and arrows in varying shades of blue. The title “Process Transformers” is 
featured at the top of the image, and logos for “SAP” and “SAP Signavio” are featured underneath the image 

 



 

Transcript 

 

Lukas Egger: Hello, and welcome to Process Transformers, the podcast that talks 
about business transformation at the intersection of processes and AI. For those of 
you who have listened before, welcome back. And if you're new to the show, thanks 
for tuning in. My name is Lukas Egger. I'm the head of innovation at SAP Signavio. I'll 
be your host for today's episode titled “Healthy Software at Scale: Blueprints for 
Adaptable Architecture”. And I'm thrilled to introduce today's guest, Chris 
Richardson. Chris is a renowned software architecture consultant and creator of 
microservices.io. He's also the best-selling author of the book Microservices 
Patterns. Chris, welcome to the show. 

Chris Richardson: Well, hi. It's good to be talking to you. Thanks for having me on 
the show. 

Lukas Egger: Of course. Chris let's start with a simple but also very hard question. 
Why is good software architecture important? 

Chris Richardson: It is important because in order for the software to have certain 
properties. Or a more common way of putting it is in order for software to satisfy 
non-functional requirements, it needs to have the right architecture. And there's 
obvious non-functional requirements or properties like scalability and availability, 
those framework from architecture, architecture affects more than just the runtime 
characteristics of the application, but also the development time characteristics. So 
it's interesting, if you think about it, a software system has to satisfy two 
constituencies. One is the users, the classic thing. The other one is the development 
teams. And the reason for that is the design decisions that software developers 
make today actually determine how easy it will be to change software in the future. 
A lot of things really don't work like that in design, right? What you do today doesn't 
make it harder to do something tomorrow, but with software, you can very easily do 
that. And that actually all ties back to architecture. 

Lukas Egger: I think you were touching on something that is at the core of what 
people are interested in, right? The ability to change. Now, architecture mostly is 
connected with, in a lot of people's heads, as technical debt. So how does one think 
about architecture in terms of being able to adapt? Like, are there clear guidelines 
or patterns? Like, what is it that sets apart architecture that can enable an 
organization to change quickly? 

Chris Richardson: Yeah. And I mean, that's a good question. I think it's got a; it's 
actually quite a deep question in a way. So, the way I like to introduce this topic is as 
follows, right? So, you know, the world that we live in is volatile, it's uncertain, it's 
complex, it's ambiguous, which I guess you could condense down into, it's crazy, 
right? It's very unpredictable. And in order for businesses to thrive in that world, they 



 

actually need to be very agile, very nimble. And given that businesses are powered 
by software, that means that software delivery needs to be agile and nimble. It has 
to be able to readily adapt to change. And another way of looking at the same thing 
is that the heart of software development is a feedback loop. We build something, 
we implement some features, we deploy it into production. And as soon as we do 
that, we get validation of the technical decisions that we made. What worked well, 
what bad decisions we make, and we also get feedback from the users, whether 
we've actually met their needs. In today's crazy volatile world, we need a very fast 
feedback loop so we can constantly learn about how to build our software and also 
what the users need so we can constantly course correct. We need an architecture 
that actually facilitates short feedback loops and adaptability. 

Lukas Egger: Now, the goals you're laying out, there's no one out there who 
wouldn't like that, right? They want code that is a pleasure to maintain, that works for 
the users, that scales, that does all these things. But again, mostly when we talk 
about architecture, it sounds like a bit like a liability on the one hand. And on the 
other hand, it feels like it's very driven by a couple of flashy names or concepts, 
right? There is monoliths, there is microservices, there is cloud native, there is 
streaming. And for a lot of people, it's hard to cut through all of that. So maybe you 
could help disentangle a little bit like what are the most important concepts to 
maybe get a bit closer to what it truly means to get to architecture. 

Chris Richardson: Well, I think there's a few. One of them, which is ironically an 
absolutely ancient concept, is that of loose design time coupling. That is a concept 
that first was discussed by, or he might not use these words exactly, but David 
Parnas talked about this as long ago as 1972. And it's the whole idea of modularity 
and encapsulation. So, when you make a change to your software, like you're 
implementing a feature or fixing a bug, the scope of that change should be as small 
as possible, right? Like ideally, we could be down to a single line of code in a single 
class or a class or a package or if we're going up the design hierarchy it could be an 
application or it could be a microservice right but it should be as far down and as 
small as possible and that's really a property property of loose design time coupling 
and cohesion i change something here I don't have to change it in five million places, 
And the reason that matters is especially problematic when change spans team 
boundaries, right? So, I need to make a change to my software that requires you to 
make a change to your software. Right? Because of tight coupling, we have to go 
have a meeting. And everyone's schedule is busy because they're actually having 
way too many meetings aligning and coordinating and so on. And so, it really slows 
us down. Whereas if the discussion was within my team, we did that at our, say, daily 
stand-up, we're getting very fast decision-making and rapid iteration. I think most 
enterprises actually suffer from a tightly design time coupled architecture because 
they are constantly aligning and coordinating and getting anything done requires a 
very large room packed full of people on a regular basis. And I don't know if that 
happens at your organization, but that to me is that is enterprise software 
development. 



 

Lukas Egger: Them I’m sure we are all guilty of that and there is well i would say 
most of the time concepts veer off course it's not because of malicious intent it's 
because of good intentions right just like the road to hell is paved with good 
intentions so where do you think that comes from because it's not given that people 
would not adhere to loosely coupled designs right What draws people in to build 
something that's hard to disentangle and maintain? What do you think are the 
motivations? 

Chris Richardson: You certainly have to apply a set of design principles, right? Say 
software elements need to look like, I mean, I think of them as icebergs. Like very 
small visible surface area that's hiding a much larger implementation. So, there are 
sort of basic design principles like that. And then I think it requires discipline. Right? 
Sort of eternal vigilance to actually ensure that your software is constant. Is loosely 
design time coupled and that people are not taking shortcuts and introducing 
coupling because there's a deadline to meet. I think organizations actually often just 
constantly take shortcuts and ignore good design practices because shipping this 
feature is far more important. Yeah, sometimes, obviously, you kind of have to ship a 
feature to make revenue. Because without revenue, you can't, quote, survive. And so, 
there's an aspect of that. But if you are incurring all of this technical debt, then, well, 
tomorrow, when it comes to make the next change, it's going to take even longer. 
And it just builds up. And the productivity just spirals down and down and down. 
Now, you actually have to devote time to this. You actually have to let architects do 
architecture and make sure the architecture is loosely coupled rather than just have 
them 100% of the time work on features. 

Lukas Egger: I think it's now over 10 years that this famous article came out like 
software is eating the world. And essentially, it's stipulated that pretty much every 
company, no matter what industry they're in, they're also in the software industry. 
They're also building software. And we see that more and more companies want to 
differentiate. And one part of that story is building the right tools and being able of 
creating good software. So, what is a good approach or a good pattern so that 
companies can respect architecture? Because again, what you say makes perfect 
sense. And I think everybody would want to get on that bandwagon, right? Of not 
having a terrible time further down the line and want to do it. But very often it's hard 
to know what good looks like especially when it's hidden behind sometimes arcane 
looking symbols or something that is not easily. 

Chris Richardson: Understood so yeah but you know it's funny it makes me think 
about everyone should eat healthy work out and drink lots of water, I'm only at like 
45% of my prescribed water volume today, right? And so, it has analogies to that. 
There's a lot of different things. And so we kind of jumped ahead and talked about 
architecture, but I think it's also useful to take a step back and talk about what I call 
the success triangle, which says that if an organization wants, shall we say, an agile, 
nimble IT department, wants to deliver changes rapidly, frequently, and reliably, 
which is a concept that is called fast flow, then they actually need to have the right 
development process or way of working which goes by the name of DevOps as 



 

defined by the DevOps handbook. So, it's a set of principles and practices for 
delivering software rapidly, pleasantly, reliably. That's the handbook on how you 
worked. And then you also need to have the right organizational structure which is 
essentially a collection of loosely coupled teams that are able to work 
independently and more specifically the book team topologies defines the 
organizational structure that you want to follow and I’ve i mean there's a whole level 
of detail you could skip into but it's sort of in a set work according to devops 
handbook right and then structure your organization according to team topologies 
and then you need an architecture that supports that those two things That's where 
this whole monolithic architecture versus microservice architecture comes into play. 

Lukas Egger: That is something that is somehow bubbled up to general 
conversations, right? Like monoliths versus microservices. And people tend to get 
quite opinionated about their due diligence and technical depth in terms of, well, if 
it's a monolith, it has to be like a bad design choice. And if it's microservices, it's 
automatically the right approach. Can you maybe lay out a little bit the ideas behind 
it and what design choice is right under which circumstances? So, I kind of wanted to 
spell the myth that if it's a microservice architecture, it's probably wonderful and 
everything else is bad. 

Chris Richardson: Oh, no, no. I mean, yeah, it's quite the opposite. I mean, you can 
have a good monolithic architecture, and you can have a bad microservice 
architecture. And in fact, you almost could say that a bad microservices architecture 
is far far worse than a bad monolithic architecture because you sort of end up, at 
worst case, you've got the worst attributes of both. So yeah, so monolithic 
architecture. I mean, my definition, and there's some variability, but the one I like to 
use is that the application is structured as a single deployable unit. So, it's kind of 
one thing, typically in its own code, just single code repository with its own 
deployment pipeline, which is something I should really emphasize, go into in a little 
bit more detailed concept of a deployment pipeline. Whereas a microservice 
architecture, you have functionally decomposed what would otherwise be a 
monolith into a set of deployable units called services, each one of which typically 
has its own code repository, although that's not exactly a defining characteristic. But 
each service does have its own deployment pipeline. And then those services have 
two important properties one is they're loosely design time coupled right which 
means that when you work when a team that owns a service works on that service 
they rarely have to change any other services so as i mentioned loose design time 
coupling is a pretty fundamental property then each service is independently 
deployable so it can be tested in isolation without any other services by its 
deployment pipeline. And then when those tests pass, it can be deployed into 
production. It's production ready just by testing that one piece of the system. Sort of 
the reason that matters is because I've already talked about loose design time 
coupling and the importance of that and how that facilitates fast change. And 
monoliths can be loosely designed time coupled mostly but there's even though 
there's a single code base and so that doesn't force lots of teams to coordinate their 



 

work under some situations, but then the other aspect of this is having a fast 
deployment pipeline right so that's it, and this should be a fully automated 
mechanism it's the fully automated path from a developer's laptop to production. 
So, the developer does a git push amidst their changes, that triggers the 
deployment pipeline, it builds it, well, compiles it, tests it, runs security checks, static 
analysis, so on and so forth, and then deploys it into production. And this is an 
essential part of this fast feedback loop because part of the set development cycle, 
right, is I make a change. I want to very quickly deploy it into production and get 
feedback about that change. And ideally, every developer is deploying at least once 
per day and getting very fast feedback. 

Lukas Egger: I love what you're saying because essentially, from my perspective, 
what you're advocating for is no matter the architecture, what you really want to 
encourage is the ability to create feedback loops. Whatever the organization is 
working on in terms of like functionality that creates value to the user, you should be 
able to put that out quickly and in a way that limits the interaction between teams. 
So, it does not slow down each individual team. 

Chris Richardson: Yeah, so that, I guess my thoughts that's sort of coming out in a 
slightly random order here, but so let me tie this back to the monolith versus 
microservices debate, right? With the monolith, there's a single code base and a 
single deployment pipeline. And if you have a small number of teams, then 
probably you are getting fast feedback. Right? The single deployment pipeline can 
keep up with the rate of changes that are flowing out of the teams. And so, the 
feedback loop is quite short. But as you add more and more teams, ultimately, that 
single deployment pipeline will get overloaded. Becomes a bottleneck, and the 
feedback loop just lengthens. Right? Whereas with the microservice architecture, in 
multiple deployment pipelines, it basically scales as you add more teams, and you 
continually get fast feedback. And so, once again, this is a key differentiator between 
the two. You can get fast feedback at scale with a microservice architecture, 
whereas with the monolithic architecture, eventually things slow down. 

Lukas Egger: Now, that makes perfect sense in terms of like describing the 
symptoms. And I love that you mentioned, hey, there are already patterns or 
practices that we know that will help you. It's DevOps, it's loosely coupled teams, 
and its good architecture, right? I kind of now want to go into a little bit like how can 
one evaluate, especially from the outside or from the business perspective, whether 
the organization is at a level that is sufficient for being set up for the future. Because 
I think a lot of the leaders out there currently think, hey, the world will only get, in 
your words, crazier, right? Volatility, uncertainty, all these things will only go up or 
accelerate. Now, what kind of metrics or what kind of symptoms do I need to look at 
in order to make sure that we're set up for success? So, for instance, for DevOps, we 
do know that, for instance, Google is very successfully pushing like Dora metrics, 
right? Where they have like a certain set of KPIs where they want to make sure that, 
hey, if something goes wrong, how quickly can we recover and so forth. Now, 
architecture often feels like when you talk to people that there's a style to it, right? 



 

There is like an aesthetical sense to what good looks like. Can you maybe help, 
especially for people who are maybe not developers, like what are maybe the ideas 
or the KPIs or the questions someone could have in order to make sure that the 
organization and the software practices is set up for success? 

Chris Richardson: Yeah. Well, I think, you know, a good start, I think there's sort of 
three categories with metrics. And one category for sure is the Dora metrics. So, lead 
time, the time from commits to deploy. In a traditional sense, that could be, you 
know, once a month, once every six months. Right? Because the change I work on to 
today, if you're only deploying once every six months. Well, that's a lead time of, you 
know, could be as much as six months. Whereas good metrics are on the order of, I 
mean, just pick a number. But let's just say under an hour, if not even shorter than 
that. And then the other one is deployment frequency, which is essentially how 
many deploys per developer per day. And in a traditional organization, that might 
be not many, right? Once a week, once a month, so on and so forth. But in a high-
performing organization. It's of the order of at least one deployment per developer 
per day. And then I'm sure people will go, well, that's crazy. How can you test 
software, right? We have to test it really thoroughly and go much more slowly. But 
then it turns out that if you are delivering software in this way with proper automated 
test suites, you actually are doing it in a much more reliable fashion. So it's like 
moving fast and not breaking things actually go together there are the other 
reliability metrics which is change failure rate like how often do you have a 
production outage which is really low in high performing organizations and also 
mean time to recover if there is a production outage how quickly can you fix it well if 
you have a super-fast deployment pipeline, you can very readily get a new fix into 
production. Assuming you put in place good monitoring, which is another kind of 
architectural property that you need. You can quickly detect the problem. Localize 
it to a small part of the system, quickly fix it, push, run it through the deployment 
pipeline. Deploy it into production. 

Lukas Egger: And I think it's important also to mention that just because you can 
doesn't mean you have to. So as an organization, if your customers are maybe not 
accustomed to change, you don't overburden them with an interface change every 
day, but you need to have the capability to effectuate change at that frequency. 
Right, it just means you have the capability does not mean that your software that 
you're delivering needs to be like constantly moving and shifting around it's more 
like the capability in the back that ensures that you can effect a change not that you 
are pushing the change every day to your customers using your interfaces. 

Chris Richardson: I would say as a whole well first of all there's a good good way 
to think about this to separate deployment the concept of deployment which is 
having the software running in production to releasing it which is making it available 
or making it visible to the end users so i think it makes sense to just deploy 
continuously but then releasing you can hide those changes behind a feature flag 
which is essentially a switch if the flag is off then show the old ui else if it's on show 
the new Ui right so you're actually changing things behind the scenes but they're not 



 

visible until you flip the switch, Just as a data point, by the way, Amazon, for 
example, is rumored to be deploying every 0.6 seconds, Amazon.com, right? 
Obviously, massive organization. And it's like, what are they doing? Because the UI 
always seems to be the same to me. But obviously, it's a massive, complex e-
commerce, logistics, and everything organization. But it does show that you can 
have constant change with incredible reliability. 

Lukas Egger: Yeah, that's definitely what the target should look like. Now, when you 
engage with a company or teams, how do you determine whether the people, 
processes, code, architecture, like where really the constraints are and what needs 
to be fixed, right? Because we've been talking about architecture, but it's not 
obvious that that always translates to codes, right? Because you also mentioned, 
hey, it's not just a code, it's your DevOps, your ability to deploy code, run it and give 
the ability to the coder to create functionality and release it or at least push it into 
the systems, right? And then loosely coupled teams, which is a lot about team 
topology, hierarchies, incentive structures, all of that. It's really not all code. So how 
do you suss out where your talents are needed and maybe more generally how to 
think about like, what is the most principal problem? 

Chris Richardson: Well, I suppose in a sense. It's almost always a people problem. 
Right because you know I mean in a way right because the root of everything is what 
are people the culture the attitudes that what they actually do and then that leads 
to well we organize correctly are we working the correct way and do we have the 
right deployment pipeline and, architecture more generally so i guess i just have a 
series of conversations that are really looking at all of these different aspects of the 
success triangle like yeah what is your architecture what is your organization what 
are your development practices. 

Lukas Egger: And then, where would you say one needs to start effectuating 
change are you starting with devops with teams or with architecture typically if you 
want to improve overall and get to what good looks like let's say the ability to 
change code every second. 

Chris Richardson: In a sense, I guess it's like an incremental improvement of all of 
these specs. I feel like they are kind of intertwined in a way. Certainly, you could say 
that, you know, one distinct area to focus on is the deployment pipeline. What is the 
path from laptop to production. Right? Because quite often that will involve manual 
steps. And approvals so then the focus is well how can we fully automate this bake 
all of the approvals into the deployment pipeline as an automated mechanism. 

Lukas Egger: Now, as a first North Star, the frequency of deployment and getting a 
reality check from your organization, that can be like a very strong indicator where 
you are on your journey. Lately, a lot of people are like, in a way, are not talking so 
much about architecture and whether it's microservices or cloud native or not. Like 
the flavor of the month is AI and vibe coding. We had a conversation with Sebastian 
Baltas in episode 14, where we talked about the future of development and 



 

development itself is changing quite a bit. How do you feel about more people 
coding and vibe coding and what's going on with AI? Because so far it feels like vibe 
coding and all of that. but it does not really connect with architecture. It's more like, 
just say what you want, and it will magically appear. 

Chris Richardson: Well, okay, gosh. By the way, I just want to point out that the 
Dory metrics are not the only metrics you should measure. There's also what are 
known as the developer experience metrics, direct metrics. And I think those are 
worth tracking and that's a whole other conversation. And then also tracking 
architectural metrics, analyze what's going on to make sure that your teams truly are 
loosely coupled and that's something we could talk about a lot later but yeah let's 
talk about ai actually though you know James gosling came up with a great 
suggestion that we should stop calling it ai and instead call it advanced statistical 
methods. ASMs, right? Because I feel like we're confusing ourselves by, if we say, 
anthropomorphizing the technology. First off, it is not intelligent in any sense related 
to human intelligence. It doesn't know anything. Right? It really doesn't. And it 
appears to, but it doesn't. And then also, it cannot reason. It appears to reason, but 
it's all basically next, should we say, it's simply a non-deterministic next-token 
predictor that provides the illusion of knowledge, reasoning, and I guess 
intelligence. Right? And I think if we could reprogram our brains to use different 
words for those things, I feel like we could have a much more sensible debate or 
discussion about it. 

Lukas Egger: But it's certainly regardless of what the technology is at the bottom, 
right? It certainly stirs a lot of hope. There's tons of companies, especially in the 
development side of, let's say, AI or advanced statistical methods, that somehow 
follow this promise of every person can be a developer and software development 
will radically change in the next whatever, like one, two, three. To an extent that you 
can just wish what you want and almost like magic, it will materialize. That's pretty 
much the state of excitement in the industry right now, right? 

Chris Richardson: Yeah. Well, I mean, it's funny. I feel like if you've been in this 
industry, every so often someone will come up with an idea that will be the end of 
coding. Right? Or the end of developers. And maybe the first attempt was COBOL. 
Oh, we're just going to write stuff in English. And was that a 60s thing or a 50s thing? 
And then, I mean, at some point it was visual programming, so on and so forth. And 
obviously, famous last words. You know, I apologize to our future AI overlords if I've 
got this wrong. Please do not kill me. But I feel like with, say, complex business 
applications, you basically need a, especially if it's in a novel domain. Right? And it's 
like, if we're not building software in a novel domain, why are we building it? Why are 
we not just using a library if we're just reinventing the wheel? So, if we're doing kind 
of innovative things, I would argue that it is still fundamentally a human activity. 
Because there is this idea which is like. Whoa, I can just go hire up a swarm of agents 
and they go build some software, right? But given that, well, I'll call them AIs, actually 
hallucinate and they are non-deterministic, I feel like the odds are pretty slim that 
they can actually produce toads that you can never look at. I mean, people make 



 

the analogy between a compiler for a high-level language and assembler. Where it's 
like the generated code is like assembler, and you never really look at it. But to me, 
compilers are these deterministic algorithms, and if they get things wrong, it's a bug, 
and it needs to be fixed. And as a result, we never need to look. But with AI, I think 
that you actually do need to look under the covers and you need to make sure that 
every line of code that's written is good. They just generate junk sometimes. Like it's 
not even junior developer grade stuff. It's actually college. Well, I don't know. It's just 
badly written code. It's a terrible error. I mean, I've been experiencing this week. I 
started a Bromley project a week ago with called code and the code that it 
generated was just junk. And I had to teach it how to write good code with good 
error handling and a whole bunch of patterns and then once I taught it, it could 
actually copy it. It could kind of clone it and did a whole lot better, but it required 
careful review. So, I'm of the school of thought that, properly leverage AI for 
development, you actually need to be a better developer, right? And a more 
disciplined developer. And so, there's myself included, there's a few people who 
think that like baby steps and specifically test-driven development. Which is where 
what's driving development is you write a test. The test fails, you then write the code 
to make the test pass, right and then you refactor it to clean up the code and you 
constantly go around this loop and it's a human directed loop and that actually 
requires discipline to actually do test-driven development but I mean just to give 
you a data point like I’ve actually i started writing this project a week ago it was like 
Friday afternoon and i was kind of bored and it was like oh let's just give Claude a go 
on. So, I just said, I told it, I just started building this new sign. I'm using TDD, so test-
driven development. I think I have used it to produce over a thousand lines of code 
a day. 

Lukas Egger: Which, for reference, is more than anyone can just quickly pass over 
and read. So, it's like a pretty substantial amount of code. 

 
Chris Richardson: Yeah, I mean, I don't know how much I could... I wasn't even 
working on it full-time. So, I feel like it's actually boosted my productivity. But I 
actually felt quite good because I just started off by using ChatGPT to create a 
specification, turned the specification into a set of tests. And then told Claude to 
work through those tests one by one. And I was pretty much reviewing everything. 
And interestingly, it was almost overwhelming because it was like the cognitive 
overload with reviewing this stream of changes and interacting with the AI just 
exhausted me, actually. 
 
Lukas Egger: Hmm. So, you're in a sense saying that at this point, the lure of this 
magical technology that can solve development problems is like any other panacea 
before it. It doesn't work at this point. And what you really need is still good taste 
and good architecture and the fundamentals. And then you can hope to improve 
productivity. 
 



 

Chris Richardson: Well, but on the other hand, it did work, but it required a lot of I 
mean I feel like overall it was successful but it really was implementing things one 
test at a time with code review and then teaching it how to do better and then telling 
it to go clean up the code so that it was conformant with the revised guidelines so I 
think in a way it was kind of successful but at the same time I felt like I'm still the 
boss, Like it can't be trusted to do things by itself and it needs human overview. And 
so, the notion of, oh, I'm going to get rid of all of my developers and why code this 
production quality app? I feel like that's probably a fantasy for real world 
applications. Right? 
 
Lukas Egger: I love how you debunk this because what I'm actually hearing is we 
need to invest into the metrics that you mentioned into good aesthetics, good 
architecture, and understanding of what makes architecture and organization and its 
code agile. And this goes through the human oversight of very well-trained, well-
equipped in terms of like architecture tools and understanding people and 
employees. So, this idea of just getting rid of developers and getting stuff done with 
AI essentially will just create a giant heap of technical debt. Whereas if you 
empower your developers and maybe even invest more in their understanding of 
architecture and how to be writing good code, then you can actually reap rewards 
and maybe get a productivity boost. 
 
Chris Richardson: I mean, I would say that it boosted my productivity. Because as I 
said. This was kind of a part-time thing. But I managed to write a lot of code, actually. 
Yeah, then there were times when it was super confused and couldn't figure stuff 
out. And I had to really dive in and so on. It was kind of a win, but it required 
guidance. 
 
Lukas Egger: And I hear you're saying it required less of the writing and more of the 
supervision and the feedback and the understanding of where the organization and 
you as a developer want to ultimately go with the project, right? So, it may be 
alleviate some of the pain with writing the lines of code, but it will fail if you don't 
have a strong understanding and good aesthetics about where you want to go. 
Yeah, yeah. Like the taste buds need to get better. 
 
Chris Richardson: Yeah. You know, it's funny. I'm talking about feedback loops, 
right? So, with this, you know, TDD, there's a major feedback loop, which is basically 
continually running tests. And so, one aspect, in order to speed all of this out. You 
need to structure the code base in a way that accelerates the test execution time. In 
a nutshell, you need the right architecture to accelerate this sort of micro feedback 
loop. 
 
Lukas Egger: I love that because it harkens back to what you said at the beginning, 
that ultimately the good architecture is always serving like better feedback loops 
because it creates less dependencies, it speeds up and it gives the people who are 
working on a problem and whether they're working with agents or not, it gives them 



 

a faster feedback loop to what they're building. So I think that's a very strong and 
very tangible position that can serve as a really awesome North Star in evaluating 
these things. Now, moving on from AI, the question we always ask, if you could 
redesign one thing, like if you could change one business process, if you could 
magically change one thing and let it not be AI, what would it be and why? 
 
Chris Richardson: Yeah, that made me laugh when you mentioned you were going 
to ask this. Well, so I'm a one-person business corporation. Right? And let me just 
say the least joyful part of my day is I love working with big companies because they 
always have interesting architectural problems. But the engagement is sort of, I 
should say, bookended by two things. One is the procurement process. Particularly 
the legal aspect of it, which is quite overwhelming for a small business. And 
sometimes the other end is accounts payable. 
 
Lukas Egger: Yeah, we're definitely feel called out here. Yeah. 
 
Chris Richardson: And yeah, sometimes it's all kinds of feats that you have to jump 
through and iterations on the contracts. Which are in some cases. The amount of 
legal fees would have exceeded the. It was like for a one-hour talk would have 
exceeded the fee for the talk. Right. That's an extreme example. It's just sort of like, if 
those things could just be simplified and shrink-wrapped contracts that were fair to 
both parties and so on. And payment processes that recognized a computer that 
documents aren't transported by mule from one department to another. 
 
Lukas Egger: You know. i think a lot of our listeners will have intimate knowledge 
about what you're describing that is unfortunately a common occurrence right yeah 
Chris thank you so much i think you have put your finger onto something that's truly 
important the world will only get crazier in order to adapt and be successful we 
need to care about the feedback loops and some of the most important, if not the 
most important, go all the way down to where code resides and architecture plays 
out. There are a couple of metrics and good practices in between that thought 
leaders and businesses who really care about their future prospects can look at. 
You mentioned a couple of them, but in terms of first principle thinking, it was 
extremely helpful to get your take, whether whether it's on AI, whether it's 
architecture, there's a clear understanding of what needs to be done. And I think 
that's the best we can hope for is getting more clarity in a world that's getting crazier 
and crazier. So, thank you so much for helping with that. And thanks for being on the 
show. 
 
Chris Richardson: Well, thank you. It was a fun discussion. I hope your listeners find 
it useful. 
 
Lukas Egger: I'm sure, 100%. And with that, thanks for listening to another episode 
of Process Transformers. This podcast is brought to you by the dedicated efforts 
and the hard work of our entire team. So, a heartfelt thank you to Beyza Kartal, 



 

Jahanzeb Khan, Reagan Nyandoro, Erica Davis, Cecilia Sarquis, Fouzi Murad, and 
Julian Thevenod. If you have questions or comments, email us at 
processtransformers@sap.com. And until next time for another transformative 
conversation. 
 
End of transcript. www.sap.com. 

© 2025 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures, or restrictions related to SAP Materials for general audiences. 

http://www.sap.com/
http://www.sap.com/legal-notice

